Electromagnetic embossing of optical microstructures (2016)

Langstädtler, L.; Schönemann, L.; Schenck, C.; Kuhfuß, B.

ASME Journal of Micro- and Nano-Manufacturing June 2016, Volume 4, Issue 2


Electromagnetic forming (EMF) is a high-speed forming process that is already established in the macroworld. Due to its advantages like high deformation rate and cheaper tools, it is introduced to microforming. In this research, the replication of prismatic optical microstructures is investigated. EN AW-1050A (Al99.5) micrometal sheets with a thickness of 50 μm and 300 μm are electromagnetically micro-embossed. With this technique, it is possible to successfully replicate triangular cross section micro V-grooves of 86.6 μm in width and 24.1 μm in depth with an average surface roughness of Sa = 44 nm. The microstructures of the embossing tool are generated by diamond micro chiseling (DMC), a novel machining process to produce microstructures with discontinuous geometry, like miniature cube corner retro reflectors and V-grooves with well-defined endings.